Characterization of the Microbial Communities in Rumen Fluid Inoculated Reactors for the Biogas Digestion of Wheat Straw
نویسندگان
چکیده
The present study investigated the effect of rumen fluid (RF) concentration on the methane production through anaerobic digestion of wheat straw in batch mode, and compared the microbial communities in RF and RF inoculated reactors by 16S rRNA genes sequencing. Six levels of RF concentration including 1%, 5%, 10%, 15%, 20% and 25% (v/v) were used in reactors R1, R5, R10, R15, R20 and R25 respectively. The results revealed that lower than or equal to 5% RF concentrations resulted in reactor acidification and low methane production. The highest methane yield of 106 mL·CH4· g·VS−1 was achieved in R10, whereas higher RF concentrations than 10% could not improve the methane production significantly. Methanosarcina barkeri was abundant in the well-working reactors, and Methanobacterium was dominant in the poor-working reactors, implying the archaeal communities in reactors had changed greatly from the Methanobrevibacter-dominated RF. Although the relative abundance of Clostridium and Ruminococcus were greatly different between RF and reactors, the Bacteroidetes and Firmicutes communities were dominant in all the tested samples. The results indicated that the in vitro anaerobic conditions had altered the rumen methanogenic communities significantly and the facultative acetoclastic Methanosarcina was important for the methane production in the RF seeded reactors.
منابع مشابه
Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry
BACKGROUND During strategic planning of a biogas plant, the local availability of resources for start-up and operation should be taken into consideration for a cost-efficient process. Because most bioethanol/sugar industries in Brazil are located in remote areas, the use of fresh cattle manure from local farms could be a solution for the inoculation of the biogas process. This study investigate...
متن کاملBiogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.
This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with n...
متن کاملThermal Pretreatment for Improvement of Biogas Production and Salinity Reduction by Zeolite
The anaerobic digestion of organic waste for biogas production can be affected by some variables such as temperature; concentration of the biogas feed solution, bacteria populations, and pressure. This study investigated the effects of thermal pretreatment at 50, 75, and 100 ºC on the biogas produced by simultaneous anaerobic digestion of cow manure, mushroom waste, and wheat straw at thermophi...
متن کاملBiogas production from wheat straw: community structure of cellulose-degrading bacteria
Background: Wheat straw is one of the most abundant crop residues produced in the world, making it highly interesting as a substrate for biogas production. However, due to the complex structure, its degradability and gas yield are low. The degradability can be improved by pre-treatment, making the material more accessible to microbial degradation. Methods: To investigate the microbial response ...
متن کاملThe Comparison of in vitro Digestibility of Wheat Straw by Rumen Anaerobic Fungi of Khuzestan Buffalo and Holstein Cattle
This study was conducted to compare digestibility of wheat straw (WS) by fungi and whole rumen microorganisms (WRM). Dry matter (DM), neutral and acid detergent fiber (NDF and ADF) digestibility of WS were compared with in vitro digestion (IVD), gas production (GP) and specific rumen anaerobic fungi culture (SRAFC). Dry matter, NDF and ADF digestibility of WS by WRM of buffalo (60.80, 49.93 and...
متن کامل